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Research Background
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Figure 1: Distributed renewable energy generation and storage system.

Why Does IBDC Require Fast Dynamics?

B Large uncertain and unpredictable power flow fluctuations induced by renewable energy sources.

B IBDCs are increasingly used in applications (e.g., pulsed-power loads) requiring fast responses.
B Fast responses allow the use of smaller output capacitors, thereby reducing the filter size.
B Existing control methods have shown their inability to achieve fast and smooth load transitions.

= Further optimization of the dynamics and control design is necessary!
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Typical Topologies of DABC
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Figure 2: Circuit schematic of NR-DABC.
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Circuit schematic of SR-DABC.

Bidirectional Dual-Active-Bridge Converter (DABC)

simple structure,
galvanic isolation,
high efficiency,

high power density,
flexibility of control,
ease of modulation,

wide ZVS range, etc. |

Basic Principles

controlling the shape
of the high-frequency-
link current is equiva-
lent to controlling the
direction and amount
of the power flow be-
tween the two sides.
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Dynamic Performance of DABC and Its Challenges

Roles of Controller and Transient Modulation

PWM Generator Con\ierter
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Figure 4: Relationship between actuator and controller.

In response to a load change (power adjustment), the current value of the control variable (i.e., 8[n]) should
be changed to the desired value (i.e., O[n + 1]=0[n]| + A0). ‘

Differences Between Control Design and Transient Modulation

B The controller determines the optimal control variables (i.e., phase-shift angles) to maintain a constant
output voltage, according to the feedback information.

B The PWM generator (actuator) determines the switching sequences for driving power switches. (It is
the responsibility of PWM generator to specify the way to update the control variables.)

® As a result, both the controller and transient modulation determined by PWM generator
can affect the dynamic performance of a closed-loop controlled DABC.
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Transient DC Offsets in NR-DABC
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Dynamic Performanc
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Figure 6: Transient waveforms of SR-DABC under CTPSM.

e of DABC and Its Challenges

@ high voltage and current stresses, power device ageing and damage, long settling time, etc.
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Motivation and Objectives

Motivation

Benefits of Using Fast and High-Gain Controller

Reduced Response Time, Lower Output Voltage Fluctuation, Smaller Steady-State Tracking Error, More
Compact System Integration, etc.

/A Potential Problems Posed by CTPSM

A fast and high-gain controller can lead to abrupt and large variations in the control variables, thus producing
severe transient dc offsets and oscillations under CTPSM.

% How to ensure a fast but smooth transition process?

= The high-frequency-link current of DABC should be modulated and controlled properly!

= This motivates our research to (1) gain a thorough understanding of DABC’s transient behaviour and
its relation to transient modulation, and (2) develop advanced transient modulation schemes for achieving
ultra-fast, dc-offset-free, and oscillation-free dynamics.
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Motivation and Objectives

Objectives

Objectives

@ To better analyze and explain the causes of transient dc offsets generated in the magnetic elements of
NR-DABC and HF transient oscillations generated in the resonant tank of SR-DABC.

© To investigate the fundamental relationships between various types of transient modulation schemes,
and to attempt to establish a set of unified equations that can govern the existing schemes.

@ To propose new and more advanced transient modulation strategies for both NR-DABC and SR-DABC,
and to examine their effects on fast closed-loop controlled DABCs when they are implemented in a cycle-
by-cycle manner.

© To compare the simulation and experimental results under different transient modulation strategies,
and to find the optimal ones for NR-DABC and SR-DABC.

@ To offer systematic design approaches for developing transient modulation strategies, and to shed light
on the general theory of optimizing the dynamics of DABCs.
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Literature Review of Modulation Strategies

Optimized Steady-State Modulation Strategies

for Improving Conversion Efficiency

Outer Phase-shift Angle: 62 Efficiency Optimization Method

Inner Phase-shift Angles: 61 and 63 Optimization Problem: for a given power

SPS Modulation: 62 # 0, 61 =0, and 63 =0 level, different combinations of 61, 62, and 63
DPS Modulation: 62 # 0, 61 =0, or 63 =0 can be found under multi-phase-shift (MPS)
TPS Modulation: 62 # 0, 1 # 0, and 65 # 0 modulation schemes for maximizing the over-

all efficiency [57]-[68].

Optimization Objectives: minimum root-
mean-square (RMS) or peak-to-peak value for

Vis S
[/U\‘AS\

SS SS | DABC’s high-frequency-link current, low or
K ~J 5. zero backflow power, wide-range ZVS opera-
tion, etc.

Vab
=
S
Vab

M Optimization Methods: Lagrange multi-

g 02 pliers and Karush-Kuhn-Tucker (KKT) con-

W\/ S B /\ ditions [51],[57], particle swarm optimization
(b)

(PSO) algorithm [62]-[64], genetic algorithm
(a)

[65], artificial intelligence (AI) algorithm [66]-
Figure 7: Typical steady-state waveforms of NR-DABC and SR-DABC [68] etc.
under (a) DPS and (b) TPS modulation schemes. ’
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for Eliminating Transient DC Offsets in NR-DABC

Literature Review of Modulation Strategies

Optimized Transient Modulation Strategies (OTPSM)

Cause of Transient DC Offsets

Any asymmetry in the inductor volt-second product
will lead to magnetic flux imbalance that induces
dc offsets, and hence the directly-adjusted transient
switching pattern under CTPSM will lead to a mono-
tonic increase in the volt-second product or flux link-
age of the inductor during transient state.

Basic Principle of OTPSM

To design specific switching sequences that can seam-
lessly modify the inductor current and achieve dy-
namic volt-second balance during transient state.

Main Advantage of OTPSM

To directly update a large-amplitude phase-shift in-
crement or decrement within about one switching cy-
cle and to limit the inductor current.

A

xxxxx S00im

Time (5)

(a) (b)
Both Type-A [90]-[94] and Type-B OTPSM [94]-[96]
strategies originate from “Relative Motion”.

Drawbacks: (1) serious transient dc offset and long
settling time exist in i,,; (2) designed transient pulse
widths under Type-A and Type-B OTPSM strate-
gies are related to the voltage gain M =NV, /V4.
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Literature Review of Modulation Strategies

Optimized Transient Modulation Strategies (OTPSM)

for Eliminating Transient DC Offsets in NR-DABC
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Figure 8: Simulated open-loop transient response of NR-DABC under different types of OTPSM strategies: (a) Type Ay [90].
(b) Type Bi [94]. (c) Type C1 [97]. (d) Type D1 [98]. (e) Type Ey [100]. (f) Type Fy [100].

Type-C and Type-E OTPSM strategies generate two equal-width transient pulses by consecutively moving
two edges of vqp and/or veq, while Type-D OTPSM continuously generates three unequal-width transient
pulses in veq. Type-F OTPSM introduces zero-voltage durations into ves and/or veq.

Drawbacks: All Type-C' to Type-F OTPSM strategies can lead to overshoots/undershoots in i,,, and the
average values of both iy, and i,, during transient state are not zero. J

Academic Oral Presentation July 21, 2025 13 /86




Literature Review of Modulation Strategies

Optimized Transient Modulation Strategies

for Eliminating Transient Oscillations in SR-DABC

(How to effectively modify the transient trajectories of resonant waveforms of SR—DABC?]

Non-linear Dynamics of SR-DABC i
Unlike the piecewise-linear inductor cur-

rent in NR-DABC that can directly reach

a specific value by linearly adjusting the
turn-on and turn-off pulse widths of some | Vs

power switches, the trajectory of the non-
linear resonant current in SR-DABC can-

not be easily modified to follow the changes

in pulse durations instantaneously due to Lt
. . 0 Pt . . . ~ s . B
the inertia of the resonant tank. Therefore, Figure 9: Principle diagram of a trajectory-prediction-based transient mod

K ulation strategy for SR-DABC [109].
none of the OTPSM strategies developed
for NR-DABC can be applied to suppress | Recently, four OTPSM strategies were proposed in [109]-[111]
the transient oscillations in SR-DABC. for eliminating transient oscillations in SR-DABC.

Vab

p

= OrigifialState
— New State

Drawbacks: (1) closed-form expressions are not available; (2) they require rich feedback information and
several high-bandwidth sensors for trajectory planning and computation.
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Literature Review of Control Strategies

Disadvantages of Different Control Methods

Pure PI Control [118]-[123] Current-Mode Control [126]-[129]
Natural-Switching-Surface Control [130]

The interaction between the two tuning parameters
Deadbeat Current Control [131]

makes it challenging to simultaneously achieve fast
and stable performance over the whole operating They are not desirable solutions because the high-
range. frequency-link current of DABC must be sampled by

costly high-bandwidth sensors at a high sampling rate

Pre-Calculated Feed-Forward Control [124] (i-e., at least twice the switching frequency).

A lookup table is used to decouple the complex rela-
tionship between phase-shift angle and load current, Disturbance-Observer Control [132]-[133]
but the control performance relies on the difference Sliding-Mode Control [134]
between actual and nominal circuit parameters. Model Predictive Control [9],[41]-[45]

- - In exchange for fast transient response, the controller’s
Virtual Direct Power Control [125] gain and bandwidth must be increased. The control
Although it is effective in cancelling the effects of | variables (i.e., phase-shift angles) will undergo large-

circuit parameters, its performance degrades signif- | magnitude changes under CTPSM, thus resulting in
icantly at light-load conditions. large transient dc offsets and oscillations.
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Summary of Literature Review

How to Achieve Optimal Dynamic Performance?

-
I N, AR AR

New Solution: Sensorless OTPSM+Fast Controller (e.g., MPC) o 2L /

® Significant Limitations of Existing OTPSM Schemes T R W e AT
@ The inner links between different OTPSM schemes are un-
clear. Existing OTPSM strategies developed for NR-DABC a | AN
cannot achieve complete transient dc-offset elimination, and
there is no easy-to-implement OTPSM for SR-DABC. (a)

© All previous OTPSM strategies except [100] have only been ol H‘q\f‘v*«—f—r~kx-~‘~
validated in open-loop conditions, and hence their OTPSM e
algorithms (transient pulse widths) must be pre-calculated. I S
© A much-debated question is whether such OTPSM strategies v “ v
can truly bring about positive effects on improving the dy- . “ . ;
namics of closed-loop controlled DABC. A pure PI controller 1A ”WWWW%%H%%
Lk

typically suffers from a trade-off between response time and
stability margin. As demonstrated in [100], if PI controller’s Figure 10: Expcrimcnta(lbt)ransicnt response of NR-

gain is too high, the system can become unstable. DABC under single-voltage-loop PI controller with
(a) CTPSM and (b) Type F; OTPSM [100].

Academic Oral Presentation July 21, 2025 16 / 86




Contents

» Optimal Transient SPS Modulation for NR-DABC

Academic Oral Presentation July 21, 2025 17 /86



Equivalent Circuit and Power Transfer Model of NR-DABC

Applying Superposition Principle

—
Vab v - Nvey 1L = tab — mlcd R dab —lea (1)
(a) ) N2Ls . Ly
m = 2
Ll T T A A L O

4

Steady-State Power Transfer Model

Nveq 1 2T},
P=o / Ve (t)iz, ()t
h
(d) ol
Figure 11: Primary-referred equivalent circuits of NR-DABC. ~ NVlVQTth(l — D) (3)
(a) Ideal equivalent circuit. (b) T-model equivalent circuit. Applying L

superposition principle. (c) Individual contribution due to vgp. (d) Indi-
vidual contribution due to Nv.q4.

¢ -During Transient State
Magnetizing Inductance: L,,> L @ s

Total Equivalent Series Inductance: L=_L,+N?Ls I D
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Proposed Symmetric Single-Sided OTPSM (SS-OTPSM)

Unified Transient-Modulation Framework for NR-DABC

General Solution of OTPSM

Yab ETM WiThe 2T WsThe D j;’;r T 17 " All the Type-A to Type-E OTPSM strate-
- a . - o W T\ hET gies fulfill the two constraints.
he 4L he 5Lhe 64 he he 7 ® W1~Ws cannot be decoupled from M.
; B - © Eliminating the dependence of M yields
N—— ‘\ ;  a general solution for sensorless OTPSM:
i 14+ Wo=W1+4+ Ws
! Sani Sab3 Sabs t 1+ Ws =Wy + Ws (4)
lca : T 2Ws +d = 2Ws.
\/ y 7
fh 1 bty Lats 1o ot e to i tn hs Minimizing Transient DC Offsets
«—Original State—><——Transient State New State

© The average values of i, and i.q are zero

Figure 12: Unified framework of OTPSM strategies for NR-DABC. (symmetric about the horizontal axis)

B Constraint (I): The time interval ¢19—t9 should be equal
= =(1 2
to (D + d)The. = Wi+Wa+Ws+d=W,+Ws+Ws gl_$3_(1+£2)/2 i
B Constraint (2): ip(tg) =11 (t13). = a=Ws = (1+Ws)/ (5)
0= (2-2W-H2Wo2Ws - 2W1+2 Wt 2Ws—AWs—242d) M 2W2 +d = 2Ws
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© Type-I SS-OTPSM (veq is unmodulated):
Wy =Ws=1-4
Wy=1-14
W= Ws =W =1

ves (V)

Proposed Symmetric Single-Sided OTPSM (SS-OTPSM)

® Type-II SS-OTPSM (vyp is unmodulated):
Wy =Wy=W5=1
Wy=Wsg=1+14 (7)
Ws =1+ %

i (A) var (V)

J 100]
u’mni 0
g 100}

100}

T 0 T

" ] |

DI rayT

) (A

9 /i \_/—\ s B q S
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Figure 13: Simulated open-loop transient response for an increase in the phase-shift ratio under CTPSM and SS-OTPSM
strategies. (a) Transient waveforms under CTPSM. (b) Transient waveforms under Type-I SS-OTPSM. (c) Zoomed-out
transient waveforms of iz, V2, ir, and i,, under Type-I SS-OTPSM. (d) Transient waveforms under Type-II SS-OTPSM.
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Proposed Symmetric Single-Sided OTPSM (SS-OTPSM)

© SS-OTPSM (6) is always effective to eliminate transient dc offsets under different circuit parameters. J

Var (V) i (A) Var (V) i (A)
[ T e TN e R s I 5| MM l [ TR e N B 5|
ol 0‘ of Ow HM M M
150 Kl | s s
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n n b
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(a) (b)
Figure 14: Parameter sensitivity analysis for Type-I SS-OTPSM. Simulated open-loop transient response under (a) CTPSM
and (b) Type-I SS-OTPSM. The simulation parameters are as follows: f, =50 kHz, V;, =150 V, V> =100 V, L, =150 pH,
s =1.70 pH, L,, =650 pH, and the phase-shift ratio is changed from § to %.
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Proposed Symmetric Single-Sided OTPSM (SS-OTPSM)

Performance of SS-OTPSM

Table 1: Main Features of Different OTSPSM Strategies for NR-DABC.

1007
Type  DOF Reference W1 w2 w3 W4 W5 W6 Sensorless Complexity CEf
CTPSM 1 — 1 1 1 1+d 1 1 Yes * No i~
A, OTPSM 2 [90] 1 1— L 1 1+ 5 1 1 No wx No s
A, OTPSM 2 [o1] 1 1 1- 2 1 1+ 545 1 No wx  No E
A3 OTPSM 2 [o1] 1 - 1 1 1- 35 1 No wex No 5
2
Ay OTPSM 2 [o1] 1 1 1 1-45 No s No 2
A OTPSM 2 [92] 1 14+ 1 No o No g 501
Ag OTPSMS 2 93] 1 i i No soex No E
Az OTPSM 2 [94] 1- 55 1 No wx No E
B, OTPSM 3 [94] 1 1+5%  1-3% No p——) Zo
B, OTPSM 3 [94] 1 1+d 1 No skx No
B; OTPSM 3 [95] 1 1 1-|D+d 1 No skx No
B; OTPSM 3 96] 1 1+d 1 1 No saxk No 0o 4
B; OTPSM 3 [96] 1 1 1+d 1 No sk No PM1 PM2 PM3 PM4
C,OTPSM 2 [97] 1 144 144 1 Yes o IE -otpsM [l 3,-0TPsM[___¢,-0TPsM [l D,-OTPSM
C, OTPSM 2 194] 1 1 1 1 Yes o IE! £,-01PsM [ 7,-0TPsM [l 1-SS-OTPSM [ 11-SS-OTPSM,
Dy OTPSM 3 [98] 1 1 1 1+d 1+ 1-4 Yes wr B Figure 15: Performance evaluation of the OTPSM
dld-2D+4) Adi2D) oy + A . .
D, OTPSM 3 o9] 1 1 Lo+t g LSy Yeo e IE strategies in open-loop simulations.
E, OTPSM 4 [100] 1 1-4 1-4 1 1+4 1+9 Yes wex IE
| Did ] Did 1 1_D 1-D 1 PM1: maximum overshoot of the peak amplitude of i, .
Ey OTPSMS 4 97] 2 B = Dy Yes wirx IE! .
I+3 1+3 1 +55 1+5 1 PM2: absolute value of the transient dc offset of i .
FOTPSM 6 [100] — — — — - — Yes p—— . . )
. . . . PM3: maximum overshoot of the peak amplitude of i,,.
1SS-OTPSM 3 Proposed 11— 4 1-¢  1-¢ 1 1 1 Yes * Yes ,
1SS-OTPSM 3 Proposed 1 1 1 144 144 144 Yes * Yes PM4: absolute value of the transient dc offset of i, .
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Proposed EMPC for SS-OTPSM Modulated NR-DABC

Conventional MPC Design

Conventional MPC [41]

+ V2 i) Error - ,
EX T Compensator] s Vaclntl] ® The dynamic behavior of V5 is described by
dva P NViTh.D(1 — D)
V2 sln] Va plnt1] Co a2 —o= V. o I e ®
,’2*:%:)) Predictive Model of DABC 7 Minimizing @ Discretizing (8) using forward Euler approximation,
1, s[n]—! Cost Function Vo_pn+1] & Va_s[n] + 2T Va'[n] (9)
D[n+1] | ® The cost function J is defined as
PWM Generator J = [Va_res — Vacln + 1]]2 (10)
Figure 16: Conceptual block diagram of MPC. @ Minimizing J yields the optimal phase-shift ratio,
i _ 4K»
Although different MPCs have been developed Din+1] = 2 <1 < 1 ) D)
for NR-DABC, they can be generally depicted oo 2NT2,Vy_s[n] 12)
by Fig. 16. The major differences between e L "
the existing MPC schemes lie in the predictive Ky =2Th 1, 5[n]/Co+Vao_g[n]+(KpVo_g[n] +K; Z Va_g[7])
model, error compensator and cost function. n T=0
A simple scheme [41]: one-step prediction + PI =2Thelos[n]/Co+(KyVap[nl+ K 3 Vaglr)) sy
compensator + quadratic cost function. K} =K, +1 e (14)
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Proposed EMPC for SS-OTPSM Modulated NR-DABC

Enhanced MPC (EMPC) Design

A major problem with conventional predictive
model is that the output/transmission power P h )
(3) is derived based on steady-state waveforms; A.verage power under SS-OTPSM over the (n+1)*" cycle is
hence it cannot accurately predict the average | &'VeI by,

2—d)The
power transferred during transient state. 7 B = 1 / @t Vap (£)ir (t)dt
¢ Sampling Points (2 - d)ThC 0
a-0say, N et NViVaThe(8d—9d°+16D—24Dd—16D?)
LS e 1, Cer = (15)
4(2_d)L
27, T,= Q-d)T;, 27, . . . « .
o L 1 T | | 1 Refined the optimal phase-shift ratio D*[n + 1] employing
— 1 ‘ EMPC is given by,
| ! ! Carrier 2 « 4—3D K 2K.
‘ f D*[n+1]=D[n]+d _ (4=3D[n]) K1 +2K,
2T, 2T, 2T, 9K,
] s s B 2,/4(1+3D[n])KZ —2(7+ 6D[n]) K1 Ko+ K2
b DT, S (D+0d)T, k> (D+d)T, — (16)
9K,
[ e Ve \ / \ © (16) gives a more accurate prediction of the optimal
th cycle GiDtheycle + r2)th oycle phase-shift ratio for SS-OTPSM, compared to (11).

Figure 17: Implementation of Type-I SS-OTPSM.
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Proposed EMPC for SS-OTPSM Modulated NR-DABC

Selection of Control Parameters

20

With K,y and Ky [With K2 and Kz [With K,y and Ky
20
MPC+CTPSM
\
0 s © 5
| MPC+CTPSMy = ! MPC+C\I PSM 3 MPC+E1-OTPSM
H P H p
: E ; EK
' z ' MPC+E1-OTPSM S
: MPC+E1-OTPSM 2 H g
20 ' \| = 20 ' = 7
! ! MPC+SS-OTPSM
! EMPC+ H MPC+SS-OTPSM
1 | EMPC+SS-OTPSM N\
H H 20 EMPC+SS-OTPSM
H MPC+SS-OTPSM H -
N s
H EMPC+SS-OTPSM H 20| Vith K2 and Ko
- X X MPC+CTPSM
! ! MPCSSQIPSM )
-120 ' -120 ' X =
e 1 ) \ 2
2 ! 2 ! > 2
P | ] ! MPC+E1-OTPSM £
£ H £ H E
A~ ' a i =)
-180 ; -180 : s 7
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: : MPC+CTPS)
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100 10k 100 10k 100 101

Tk Ik
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(a) (b) (c)
Figure 18: Simulated loop gains and closed-loop output impedances under different systems. (a) Loop gains with K;l =0.07
and K;1 =0.3. (b) Loop gains with K7, =0.1 and K;2=0.5. (c) Closed-loop output impedances.
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Proposed EMPC for SS-OTPSM Modulated NR-DABC

Closed-Loop Simulations of Different MPC Systems

MPC+CTPSM MPC+E1-OTPSM ~ MPC+SS-OTPSM  EMPC+SS-OTPSM MPC+CTPSM  MPC+E1-OTPSM MPC+SS-OTPSM EMPC+SS-OTPSM
> N i B
<1001 - 36 r r
Average value of i; (A)
/| I |
L L i | |

v | I
i | |
Phase-shift angle (°)

MPC+CTPSM MPC+EI-OTPSM

05 . I b L e s : I ey | 7”\'\\“”‘*%

30m,
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0.5 zoomed-in view S -
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Figure 19: Simulated closed-loop transient responses of different MPC systems Figure 20: (a) Simulated steady-state waveforms
for step-load changes between 25% and 95% of the full load with K, and K;2. at heavy loads. (b) FFT spectrum analysis.
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Proposed EMPC for SS-OTPSM Modulated NR-DABC

Closed-Loop Simulations Under LCFF Control

LCFF+CTPSM LCFF+SS-OTPSM

100
v +V2 eln] PI D'[n]+, i
2_Ref _% Compensator X 98
V, s[n] | %
Feedforward Gain [Kl,_s[n] overshoot
lo s[n]—> K i
—
D[n+1] =
PWM Generator
Figure 21: Block diagram of LCFF control Scheme. i asymmetric
P4
Load-Current Feed-Forward (LCFF) Control
Scheme Introduced in [125]
If Va_g[n] is far from Va_ges: Feed-Forward Path p—
. undershoo
If Vo_g[n] is close to 0: PI Compensator 60m 30m 60m 80m
Time (s)
D[n + 1] = D/ [’I’L] =+ k[o_g [n] Figure 22: Simulated Closed-lcl)ntl)epg transient responses under

LCFF controller plus different transient modulation strategies.

P . . (The proportional and integral coefficients are chosen as 0.45
© SS-OTPSM is compatible with most controllers. and 0.008, and the feed-forward ratio k is chosen as 24.)
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Experimental Results

Experimental Setup of NR-DABC

Table 2: Circuit Parameters and Specifications of NR-DABC.

Symbol

Parameter Description

Value or Part Type

Prax

Rated Power

Input Voltage

Output Voltage
Output Capacitance
Load Resistance
Transformer Ratio
Magnetizing Inductance
ESR of L,

Primary Inductance
ESR of L,

Secondary Inductance
Power Switches
Switching Frequency
Dead Time

Voltage Sensing Circuit
Current Sensor

Microprocessor

250 W
100 V
100 V

A7 pF
150/43
1:1

650 uH
260 m2 :
92 pH S\
211 mQ2

1.7 pH

UnitedSiC UJC06505K
50 kHz

250 ns

Resistive Voltage Divider
LEM LA 55-P

TI TMS320F28335

Auxiliary
Inductor

Figure 23: Phoograph of the NR-DABC prototype.
B In open-loop tests: both terminals of are connected
with dc voltage sources, and the phase-shift ratio
is changed by a HMI software.
B In closed-loop tests: the output terminal is con-
nected to variable resistive loads, and MPC (or
EMPC) determines the phase-shift ratio.
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Experimental Results

Open-Loop Tests #1 crpsm

Tek Prevu e — E—— Noise Filter Off Tek Prevu —— E—— Noise Filter Off Tek Prevu e — E—— Noise Filter Of
ofi] 1ol
e I ,

UL

e Y AR AR

sl SRR ol

L Z0v A0V H =Y 0V i
Y s 2007 <t & 70k @ ins oo fur 3207 <t asrs & 7k @ i [ fur_ra20v T S
— TR et el et ———— TR it el et ——— WEEria it

07 i o H
& 7004 @ s Joos Tour 72207 ozt o ws oo Tour 2207 <Horafpas

RO g e )
(a) (b) (c)

Figure 24: Open-loop experimental results under CTPSM. (a) The phase-shift ratio is changed from é to % (b) The phase-

1 1

shift ratio is changed from % to 5. (c) The phase-shift ratio is changed from é to —5.
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Experimental Results

Open-Loop Tests #2 Proposed SS-0TPSM

Tekrevu —_— Hoise Fiter Oft Tekrevu e e s Noise Fiter 01t Tekrevu —_—r— Noise Fiter 01t

H ] H H
1004 Jfioos 280V <0 Hifisz27 (io0s fux_ 7320 <10 Hifieaes @ 00h [ fbux_7320% <10 o227
———— ol =

Tose Fier o1t ——— Toke Fifter 011 TogeFier 01t

207 H =50V i EE i
& 7ona FOYS T o rzanv sz ) e w0 @ s faos Tour 7a20v <) @ s foos Tour 7a20v BT )

(a) (b) (c)

Figure 25: Open-loop experimental results under the proposed SS-OTPSM. (a) The phase-shift ratio is changed from % to é

(b) The phase-shift ratio is changed from % to é (c) The phase-shift ratio is changed from § to — 3.
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Experimental Results

Open-Loop Tests #3 Performance Evaluation

[l cTPsM
[_Jc,-orpsm

[ ss-01PSM

[ CrrsM
[_Jc-orpsm
[ £,-oTPsm
(Il ss-0TPsM|

Value (A)

Value (A)

PM4

PMI PM2 PM3 PM4 PM1 PM2 PM3 PM4

(a) (b) (c)

Figure 26: Performance evaluation of different transient modulation strategies in open-loop experiments. (a) For an increase
1

in the phase-shift ratio from % to % (b) For an decrease in the phase-shift ratio from é to g. (¢) The phase-shift ratio is
changed from % to —%.

B © SS-OTPSM performs better than CTPSM and the other two OTPSM strategies (Type-Cy and Type-
E1) due to its capability in further suppressing transient dc offsets in both iz, and i, simultaneously.
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Closed-Loop Tests #1

(a) MPC4+CTPSM (b) MPC+SS-OTPSM (¢) EMPC+SS-OTPSM

Experimental Results

Tek stop — e Fiter D11 Tek preitu — Naise Fiter 07t Tek stop — Noise Fiter 017
H limit-cycle oscillations9 4 H 4
of 1, Max-Ady =54V e oo o[ L] Max- Ay =i4.6-V:
v, =V, : NS
T i 'II‘E‘HH“‘ = iy A N
—25 Cycles— 17 Cyxles, 6 Cyclesi—i -2
i i | i |
504 B SV L @ 1504 W SO0V a,/r_. i ] ETEY SO0V a”'.._. i |
@ 100k 8 1004 oo & _r1s50s <10z %w.m By 1006 Bufoons [ WaET <10 a3 & 100s & 1004 BfRoows [ WaET) <10 Halp10451
ER Prevu ———— i Fter 01 e K Prev = 12 =

ioise Flter Oft
UL

oise Filter O
LLEE L

ETa
€@ a8

oy a)
e 10k alpoos

Yo 10w

<0 Hepamae

T %07 6
@ 2004 b @R 1o0s  EufEous

150

< Hefan612

@ 20w
& 500w

EY
1004 Bal2000s | ST

<10 Hafaaze01

(a)

(b)

(c)

Figure 27: Experimental closed-loop transient responses for a step change in the load with {K;2 =0.1, K;2=0.5}.
B ® MPC+CTPSM leads to the largest output voltage deviation, longest settling time, and excessive
overshoots and transient dc offsets in both i;, and iy,.
B © Under EMPC+SS-OTPSM, the settling times can be significantly reduced to 6-8 cycles with no
obvious increase in the overshoot of i;, and i,,, and the output voltage deviation is also the smallest.
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Experimental Results

Closed-Loop Tests #2

(a) MPC4+CTPSM (b) MPC+SS-OTPSM (¢) EMPC+SS-OTPSM

Tek sup — s Fiter 011 Hose Fiter Ot Tel
limit-cycle oscillations 4 4
1. L] A
v, B2
1 =1 i .
Oti i——8 Cycles- - - |
»)i, i i i,
1504 By T i @D 1504 By SO0 Bulaad I 1504 By F i
T SRS - ] mnn m[nm | REET) <10 Ha[ 203816 E W04 b 1004 Bffoius RSET <10 Hafenats2 & 00k w Em mnn B;/Cﬂus | RSET) <10 Hafzr05.40
ek Fretiy ——a— e Fifer 011 e K Freiiu ————— Figse Fiter 7 ek Fretu ———— Tigise Fier 01F
Vb, DAV [T Van) H
2 mmr’ m 0 [ e e Y Y P Y Y Y, 00 i O 6 0 e 8 e 0 O 0
S g VA Ua e WS BEIEIS IS e (a0 e e U WO 8 :
i =i " :
L] FEEY H @ Z0v W =0V A) i @@ v W i
€ 500 B 1004 euE0ous T 150y <10 Hefpad:08 @€ 5004 By 1004 ByfRnans oz rsov <10 Hef13:35.47 & s0s m €n ww a,d[znws Jtus 1sov < 10Hale2:39209
(a) (b) (c)
Figure 28: Experimental closed-loop transient responses for a step change in the load with {K 5=0.1, K;2=0.5}.

B The small-amplitude limit-cycle oscillations in the steady-state waveforms under MPC+CTPSM are
caused by the presence of residual transient dc offsets, which can be avoided under MPC+SS-OTPSM
and EMPC+SS-OTPSM as SS-OTPSM can achieve complete elimination of all transient dc offsets.
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Experimental Results

Closed-Loop Tests #3

Value (A)
Value (A)

PM1 PM2 PM3 PM4 PMI PM2 PM3 PM4

a b
Figure 29: Performance evaluati(og of closed-loop experiments. (a) Load step-up transition( V\Zith {K;2 =0.10, K;2=0.5}. (b)
Load step-down transition with {K,=0.10, K;2=0.5}.
B © MPC+SS-OTPSM outperforms MPC+CTPSM and MPC+ E;-OTPSM in the four indexes.
B © With similar overshoots or undershoots in 7, and %,, compared with MPC+SS-OTPSM, EMPC+SS-
OTPSM enables an optimal transient performance with fastest dynamics and best waveform quality.
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Signals

Basic Properties of SPS-Modulated SR-DABC

Steady-State Analysis of SPS-Modulated SR-DABC

Vab

Gating | G$1.GS: GS,,GS; | GS1.GSi GS,,GS;
G0:1,G0s  GO,.GQy  GO:1,GOs GO, .GOs
] [ ]
>0 [ ke [ [oX]
A
NP o
VNV,
Vi-NV,
LI~V +Nv, [oX]
V=NV,
i
t
t
lhly by 1y
X (Y] [ ot

Figure 30: Time-domain waveforms.

4(2:)

Figure 31: State-plane diagram.

SUN Chuan @ MUST

Time-Domain Analysis of Steady-State SPS Modulation

The L,-C, tank is excited by a multi-level voltage vr.c = var — Nved.

Applying Kirchhoff’s voltage law (KVL) and symmetrical characteristics,
the analytical expressions of i, and vor:

¢i>
vLCc — 116%(*
i (ﬂ> =/ (ﬁ> cos ¢;¢i + Ws/) sin$—%

ws 5 7 sin— )
ver <§;) =vLc- (1 —cos@) +von (%:) COS¢;¢1 7 <¢:) in@
(18)

The values of i{p;/ws) and verps /ws) at different points ¢; can be solved
exactly. For example7

T(io) Zr []\% Sec(zF)Sin(ﬂz_iF%) Vltan(m?)}
vor (22) = s 1 cos( ) ~sin ) an ()]

(19)

(20)
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Basic Properties of SPS-Modulated SR-DABC

Simulated Open-Loop Results Under CTPSM

. m : .
- L |—' Loc % | | | | UUUM b /\/\M
— gb_ s . (7 =0 — ’
Y A S o WW\N\ b
e I — [wx - .

(a)  fvelope~ __
iro Vab
* Wfoy “
Vb ] [ ] [ ] “ X U—0+0
E r
.
“

[2X] 50
F”—&\a\ Vi o s8m Som 5002m __ S004m __ S006m __ 500Bm __ soim

e 1 i ! |—i | I—i - £ e 5m .
I ot

(b) (c)
Figure 32: CTPSM for (a) 6 > 0 and Figure 33: Simulated transient responses under CTPSM. (a) Step-load increase: 6 =
(b) 6 < 0. 7/6, 6=m/6 and +06=m/3. (b) Step-load decrease: 0 =n/3, 6=—7/6 and 0+6 =7 /6.
(c) Step change of power flow direction: 6=7/6, 6=—7/3 and 6+6=—7/6.
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Proposed Trajectory-Switching Modulation (TSM)

TSM: Increasing Power (6 > 0)

v¢ The transient oscillations occur at | [ | 1 |
Vb g 7 o5 -
the beat frequency: fp=fs—fr. © I 1771 I I lot 5,
' k5 =g Ser, o 4
—New State
‘ i, T T e T ;
3 gt 0 Ps
e, . e~ A 4 ¢
) Cr — ~— Y
ﬁ 4 141 4 1 I 4 141 g 14l g Il 4 1
, 9001 (212 9,95 9f 99 btu
«—Original State—>—Transient State—*——New State——> 0 ver
0 i (a)
30K 50K 100K 150K 200K 250K | [ |
B Frequency (Hz) . Vab [g I L )3 }/7| lgug I 7
Figure 34: Frequency spectrum of ,.. =3 2t Ds
Boundary Constrain Conditions o
Assuming the transient process begins S P aia. N TN
at ¢4 /ws and ends at @5 /ws. /ﬁy /i\\/w‘t
e, e
(%) = < Ilz) @y | e ~ wi
(ol = Ur T T T T T T s
o s gl ool el gl ol 4 gl gn gt T vor
I I
Ps P12 (c) (d)
vorl — | = vor| — (22) . -
ws ws Figure 35: The proposed TSM for § > 0. (a) Mode I, (¢) Mode II. 2D state-plane

Jdiagrams under TSM (§ > 0). (b) Mode I. (d) Mode II.
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Proposed Trajectory-Switching Modulation (TSM)

TSM: Decreasing Power (6 < 0)

closed-form solutions for v; > 0: | [ | 1 ;
vab 1 [ | 7] [7rs— r o
T+20+6—71 S [oX
fi=—F— (23)
2 85, gt
2F-arcsin |~ ™ N gin (27E0)] (29) ) ——
= sarcsin (—sec| —— ) sin i P, c—
Y1 2 SoF oF i, N S— ~——— — 0
-’ | et e
2 y ver —~— >
/,/ T T T T T ‘
// ¢UIII¢1U| ¢2|U¢3|U ¢41|l¢5m ¢6H1 ¢7IH ¢xm¢;ll ¢‘I(I|I¢l]:l ¢1l2" 0 Ve,
/' a
5 o : (a)
” [ 1]
@l [ | [gro 1 ot
“'. kB, it
—7l2 SEEER——— )
Motz T4 16 18 20 i /\vm‘\am
Figure 36: Feasible solution region of (24). TN sy :
Ver - N~ —— Py
T—20—6—3 L A A A Y S

By =T (25)

(c)

2F

2F

~s =2F-arcsin Esec (i) sin (27T_6>:| (26) |Figure 37: The proposed TSM for § < 0. (a) Mode III. (c) Mode IV. 2D state-

plane diagrams under TSM (§ < 0). (b) Mode III. (d) Mode IV.
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Proposed Trajectory-Switching Modulation (TSM)

Unified Form of TSM

Simplified Expressions of TSM © The transient pulse width ~ of the mod-
ulated square-wave voltage (vqy for § < 0

and vcq for § > 0) defined by (24) and (26)
can be unified as:

The following relationships can be summarized:
Q@ ¢ —ds=(r—0)+p
Q@ ¢y —pr=m1—(Bi+m—7)+(0+0)
Y=gy = (r—0)+ B ~v=2Farcsin Fsec <27;> "n(QW;?'é')] (28)

¢6 = (m—Pa—y2) + 7+ (0 +0)

Q ¢ —
Q & —
e ¢HI ¢III =0 + (71' _ BS)
@ o' — Gl = (— (35 — ) + (m = (0+4)) / \V \// N
@ o5 — ¢y =0+m+pBa Va
Q #8 — g6 =(r—Ba—7ya)+ (r—(0+9)) v st‘
By combining the above relationships with (23) and (25), B1, Be, (3”*» +lol /2 y ‘3”*%\0\/
B3, and (4 can be eliminated, thus resulting in i b i
1 1 T 41 I 1
¢5 - ¢3 ¢9 - ¢7 ¢151 - ¢H ¢!IJI - ¢ 21[ Zju Zjl?ﬂ zqn ¢'1}
:(ZSELH _ ¢;II _ ¢éII _ (b(ISH _ ¢éV _ ¢12V _ (Ibév _ ¢éV 5<0¢[;3 ¢2m ¢31|¢;u ¢Xm ¢llll),
_ ¢ ¢ AN a M
—(371‘ -+ |6|)/2 (27) Figure 38: Unified form of TSM.
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Proposed Trajectory-Switching Modulation (TSM)

Simulated Open-Loop Results Under TSM
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(a) (b)
Figure 39: Simulated open-loop transient responses under TSM. (a) The phase-
shift angle is changed from 7 /6 to /3 and back to /6. (b) The phase-shift angle
is changed from /6 to —m /6.

Figure 40: Transient open-loop state-plane
diagrams of SR-DABC under CTPSM and
TSM. (a) 0 = /6,8 = /6 and 6+6 = /3.
(b) 0 =n/3,6 =—7/6and 6+ = 7/6. (c)
B © No transient oscillations in different open-loop conditions. 0=n/6,6=—n/3and 0+ = —m/6.
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MPC Design for SPS-Modulated SR-DABC

MPC Design for SPS-Modulated SR-DABC

SR-DABC

»T,,,l Power Stage Key Design Procedures
‘ [;i‘dlc‘ - H (PWM » @]_‘ Controller @ (29) describes the dynamic behavior of Va:
river ienerator C %_; _I _£_I _ 8NV1 sin9 _& (29)
° dt - O_VQ °T 2 X, Ry,

@ Discretizing (29) by using forward Euler approximation yields (30),
8NVisind  Van]
% 1=V Va'[n)Ts =V; -
2[n + 1] =Va[n]+V2'[n] z[n]+7r2XrCof5 RiC.T.
® The cost function J is formulated as J =[Va,res — Va[n-+1]]°.
@ Minimizing J (VJ=0) gives the optimal phase-shift angle:

ofn + 1] :arcsin% {v [n]—i—é[}l]“ (31)

® A PI compensator is introduced to compensate for unmodeled effects and
act as a low-pass filter for attenuating HF noise and ensuring loop stability.
- The overall transfer function is given by:

10’ 10° Freque"(y (Hz)m‘ 10* . Ki jRL [n}
(b) Grizele) S [”e ] (K”+ P ) Ot

(30)

Magnitude (dB)
*
.

Phase (deg)

L [Wln] 2
Cofs

(32)

Figure 42: (a) Small-signal block dia-
gram. (b) Bode plot of loop gain T'(s).
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MPC Design for SPS-Modulated SR-DABC

Closed-Loop Simulation Results #1
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Figure 43: Simulated transient responses under MPC with T (K, =0.02, K; =0.005)
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B The hlgher the controller gain is, the larger the transient oscillations become.

(b
. (a) Load step-up. (b) Load step-down.
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MPC Design for SPS-Modulated SR-DABC

Closed-Loop Simulation Results
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Figure 44: Simulated transient responses under MPC with Ty (K, =0.07, K;=0.01). (a) Load step-up. (b) Load step-down.
B © TSM is effective to eliminate the transient oscillations with different control parameters.
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MPC Design for SPS-Modulated SR-DABC

Closed-Loop Simulation Results #3

(modified Ry)

(a)

B © TSM is effective to eliminate the transient oscillations with different amplitudes of load change.
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MPC Design for SPS-Modulated SR-DABC

Closed-Loop Simulation Results #4

(modified Ry, Co, fs, Kp, and K;)

V2 (CTPSM) V2 (TSM)

100

0
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(b)

Figure 45: Simulated closed-loop transient responses under MPC with modified parameters. (a) C, =47uF, Ry, =1000/90.9€2,

fs =50 kHz, K,, = 0.07, and K; = 0.01 (i.e., T2). (b) C, =100uF, Ry, =1000/90.9Q, fs =60 kHz, K, = 0.3, and K; = 0.9.
B © TSM is still effective to eliminate the transient oscillations with different system parameters.
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Experimental Results

Experimental Setup of SR-DABC

Table 3: Circuit Parameters of SR-DABC.

Item Description
Rated Output Power P, 250 W
Input Voltage V} 100 V
Output Voltage V5, 100 V
Output Capacitance C, 47 pF
Load Resistance R, 100/45 Q
Transformer Turns Ratio N : 1 1:1
Resonant Inductance L, 321 pH -
Equivalent series resistance of L, 211 mQ2
Resonant Capacitance C, 45 nF =
Resonant Frequency f, 41.8756 kHz k= :
Switching Frequency f, 50 kHz
Dead Time 300 ns @
Switches S1~S; and Q;~Q,4 UnitedSiC UJC06505K
Drain-Source ON Resistance 45 mQ
Gate Driver TI UCC21520
Op Amp for ADC TI TL082
Voltage Transducer Two-Resistor Voltage Divider Fie 410
Current Transducer LEM LA 55-P
Microprocessor L TMS3201728335 Figure 47: Implerg%)ntation flowcharts. (b)
Simulation Software PSIM 12.0.4

(a) Open-loop configuration. (b) Closed-loop configuration.
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Experimental Results

Open-Loop Tests #1 cTPsMm v.s. TSM
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Figure 48: Open-loop experimental results when the phase-shift angle is changed from 7 /6 to w/3. (a) Under CTPSM (c.f

simulation results in Fig. 33(a)). (b) Under TSM (c.f. simulation results in Fig. 39(a)).
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Experimental Results

Open-Loop Tests #2 cTPsMm v.s. TSM
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Figure 49: Open-loop experimental results when the phase-shift angle is changed from 7/3 to w/6. (a) Under CTPSM (c.f.

simulation results in Fig. 33(b)). (b) Under TSM (c.f. simulation results in Fig. 39(a)).
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Experimental Results

Open-Loop Tests #3 cTPsMm v.s. TSM
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Figure 50: Open-loop experimental results when the phase-shift angle is changed from 7 /6 to —m /6. (a) Under CTPSM (c.f.
simulation results in Fig. 33(c)). (b) Under TSM (c.f. simulation results in Fig. 39(b)).
B © TSM can eliminate transient oscillations in different open-loop conditions.
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Experimental Results

Closed-Loop Tests MPC+CTPSM v.s. MPC+TSM
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(a) (b)
B © No visible overshoot and undershoot are observed in 7, during step-load increase and decrease when
TSM is applied instead of CTPSM, and TSM can achieve high-quality transient waveforms.
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Experimental Results
Closed-Loop Tests MPC+CTPSM v.s. MPC+TSM
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Figure 51: Experimental step-load transient responses under (a) MPC+CTPSM, (b) MPC+TSM.
Zoomed-in waveforms of vap, veq, and i, under (¢c) MPC+CTPSM, (d) MPC+TSM. (T»: K,=0.07, K;=0.01)
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Experimental Results

Parameter Sensitivity Analysis (PSA) #1

—=— CTPSM —=— CTPSM
- —e— TSM 4 —e— TSM

Peak overshoot/undershoot (A)
i
Settling time (ms)
'

T
0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2
Con Cox
(a) (b)

Figure 52: Open-loop PSA results for an increase in phase-shift angle from 7/6 to w/3. (a) Peak overshoot/undershoot.
(b) Settling time.
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Experimental Results

Parameter Sensitivity Analysis (PSA) #2
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Figure 53: Closed-loop PSA results for a step-load increase from 1 A to 2.2 A. (a) Peak overshoot/undershoot. (b) Settling
time.

B © TSM is still effective even after taking the effect of parameter variation into consideration.
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Introduction to GTSM

Why is GTSM Required?

® Some Limitations of the OTPSM Schemes Developed for SR-DABC

@ MPS gating schemes can improve DABC’s efficiency. However, the feasible solution region of TSM is
restricted when fs approaches f,, which makes it inconvenient to use in MPS-modulated SR-DABC. It
is also unfeasible to extend the transient modulation methods in [109]-[111] to MPS modulation.

@ All prior methods cannot eliminate the transient dc offset in transformer’s magnetizing current.

@ As discussed in Figs. 52 and 53, the performance of both MPCs and the transient modulation methods
developed for SR-DABC can be affected by the switching-to-resonant frequency ratio F'= f/f,. When
the resonant tank’s parameters are not precisely known or deviate significantly from the nominal values,
a parameter estimation method is desirable to ensure SR-DABC can adaptively achieve good dynamics.

Table 4: Comparison of transient modulation schemes for SR-DABC.

Vi e Desirable properties GTSM | TSM [140] | Methods in [109]-[111]
; — Oscillation Suppression v v v
Vab T ", ¢ ‘ DC-offset Elimination v X X
Generic Method v X X
(a) (b) Analytical Expression v v X
Figure 54: Two equivalent circuits of SR-DABC (a) Sensorless Algorithm v v X
without magnetizing inductance L,, and (b) with L,,. Closed-loop Implementation v v X

Wide Feasible Region v X Not applicable
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Independent Half-Bridge Equivalent Model of SR-DABC

vap and v.q under any commonly used fixed-frequency phase-shift modulation schemes can be seen as pro-
duced by four independent half-bridge square-wave generators (i.€., Vao, —Ubo, Veor, and —Vg,r ).

Table 5: Relationships Between Different Definitions of Phase-Shift Angles.

< HYCra
8
=

G,

HVern

“Vbo

1l

Crirg

L, NL,
Lna

Submodel 1
L I N

Imb

Submodel 2
L NL,

Submodel 4

Typical Steady-State Waveforms of
TPS Modulation

Vao e

Figure 55: Half-bridge equivalent model.

Phase-Shift Relationship |Reference Signal
Opa =0,

Oca =0+ 0.5 (6; — 03)
Opa =0+ 0.5 (6, + 03)

Reference Signal Phase-Shift Relationship
Oap = 0o + 0.5 (6, + 03)
Opp =02+ 0.5 % (05 — 0,)
Ocp = 03

Contribution of Each Independent Excitation Source

Vao “Udo'

Using the superposition theorem yields
7:7- = i'r‘a I i'rb + i'rc + 7:rd
bm = tma + fmb + bme + imd (33)
VCr = VUCra + VCrb + VCre + VCrd
Applying mesh analysis to submodel 2 and submodel 3
N?L,
.m = = o ome 'r 4
fmb LT+N2LS“’ (34)
Yme = (7‘02me7‘ = H)Zrc (35)
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Independent Half-Bridge Equivalent Model of SR-DABC

Open-Loop Simulation Example under CTPSM

from SPS Mode to TPS Mode

200|Vab Ved VCr

- During transient state, the low-level dura-
20 tions of —vpo, Veor, and —vg,s are directly

200 \oscillations mcreased/decrgased by Abpa, Abca, and
4 7 Afp 4, respectively, with respect to vqo.
r Im
<o 4
= ---Original State ---Transient
-4 20m 20.04m 20.08m 20m 20.41
100|Vao VCra ~Vbo VCrb Veo' Vere ~Vdo' VCrd 2
o o
-100)
2
R VAV AVAVAVAV AV /AVAVAVAYAVAVAY \VAVAVAVNAVAY
i/'u 00*1q ir/) 007, ir'r im(' im' imc -4
E—T 20.08m 20m 20.08m 20m 20.08m 20m 20.08m 200 -100 0 100 200
Time (s) ver (V)

(a) (b)
Figure 56: An open-loop simulation example under CTPSM with V; =110 V, Vo =100 V, fs =60 kHz, and F =1.54. In this
simulation test, the scenario 61 =0, 65 =m/9, 03 =0, A0y =x/6, Abs =117/36, and Af3 =7/9, i.e., a transition from SPS
mode to TPS mode is simulated. (a) Simulated transient waveforms. (b) vc,-i, state-plane diagram under CTPSM.

B ® Obvious transient oscillations and dc offset can be observed under CTPSM.
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Proposed Generalized Trajectory-Switching Modulation

Design Principles of GTSM

Reference Vg, ~ CTPSM 2

Veo' L

Reference =V, (j‘TSM

Steady State —_.

i (A)

L L GTSM.CTPSM

\/
GTSM CTPSM (b)
panN ' ' A\ W 7 2[Steady State —

Veye ¥
Cref NS histshy
. GTSM.CTPSM
. "\ /\ N\ N\ N\ 0
Ime / \/ E
t <
Iohty I3ly Isle 17 Ig Iy Loty tiofis Talis Lielir 3
"_7[_"_7[_"70(1"‘7(12"‘70(3*"*&4‘”_7[_"—7[_’—’60 I _2|Transient State —
—0Ocp OcptAOcp -120 ) 120
«—Steady State— Transient State Steady State— Vere (V)

(a) (c)
Figure 57: (a) Theoretical transient waveforms with CTPSM and the proposed GTSM in submodel 3. (b) vcyc-irc state-plane
diagram under CTPSM. (¢) voyre-irc state-plane diagram under GTSM.
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Proposed Generalized Trajectory-Switching Modulation

Boundary Conditions
for Realizing DC-Offset-Free Transient Response

Elimination of Transient DC Offset

According to (34), any operation in im,. and/or i,,q may result in large transient dc offsets. It is suggested
that —vg. is fixed and used as the reference signal.

The constraint for achieving dynamic volt-second balance during transient state

cho/al_cho’a2+cho’a3_cho’a4:O = a1 —as+az—os=0 (36)
Phase-shift constraint (to ensure that the transient state ends no later than ¢13)
ws(t13 = t5) =1+ a2+ a3+ as =47 — AQCD (37)

Combining (36) and (37) leads to

a1 +a3 =a2 + a4 = 27(70.5A90D (38)
To minimize the adverse effects caused by transient dc offset, it is important to minimize the time-averaged
value of ime (i.€., imc) over the transient state.

.= 1 t13 . NVQ TS 2W70.5A90D 203
me = 3 3 m,cdt S - - 39
et —ts /ts ' 2L, 4 2 27 —0.5A0cD (39)
For a given Afcp, ime reaches its minimum value only when (40) holds
az = az = max (az) = max (a3) (40)
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Proposed Generalized Trajectory-Switching Modulation

Boundary Conditions

for Realizing Oscillation-Free Transient Response

Elimination of Transient Oscillations

irc and vere can be expressed by (41) and (42), respectively,

re(t) = tre(ts) cos(wr(t — 1)) + (—Nveor) — vere(ts)) sin(wy (¢ — ¢:))/Zr (41)

Vere(t) = vere(ti) cos(wr(t — ) + Zrire(t:) sin(wr(t — t5)) + (—Nveor ) (1 — cos(wr(t — t5))) (42)

The sufficient and necessary condition for effectively suppressing the transient oscillations in i,. and vorc is
that their new steady-state values at t13 should be equal to their initial steady-state values at t5.

irc (t13) = irc (t5)

(43)
vere(t13) = vore(ts).
A 4-DOF general solution for the suppression of transient oscillations in i,. and vcyre:
Do 28T 02 27050000 —0u (44)
2F 2F F

® GTSM — Optimal 4-DOF Transient Phase-Shift Modulation
To achieve oscillation-free and dc-offset-free dynamics should simultaneously satisfy (38) and (44). Through
a careful analysis, only one particular solution set, i.e., the proposed GTSM (45) is available.

a1 =a4=21—0.5A0cp —ao

ar=az=F arccos[(l—l—cos[%] sec[%])/ﬂ

(45)
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Proposed Generalized Trajectory-Switching Modulation

Performance Evaluation of GTSM

Comparisons of Different OTPSM Strategies for SR-DABC

B There are no analytical solutions for the transient modulation strategies
in [109]-[111], which makes them unsuitable in closed-loop applications.

B The proposed 3-DOF TSM strategy is a particular solution of (44), and
there exists no feasible 2-DOF modulation schemes for (44).

B GTSM can be utilized over a wide range of fs (i.e., it produces feasible )
solutions for small F'), and its feasible region is much larger than that of 1_4 16 18 20
TSM. Hence, QTSM can be applied in any submodels. without changing Figure 58: Feasible rlégions of GTSM
the reference signal. This makes GTSM easy to use in MPS schemes. | ,,q TswMm.

® When F—o0, conventional NR-

DABC can be regarded as a spe-

cial case of SR-DABC with infinite

{1
1.0 12

B Until now, the proposed GTSM strategy is the only unified approach
capable of simultaneously eliminating transient oscillations and dc off-

sets in MPS-modulated DABC. C,, and (45) can be simplified to
B A transient modulation scheme developed for SR-DABC may be appli- | (46) for using in NR-DABC.
cable to NR-DABC (e.g., GTSM), but the inverse is not true. ar=ag=7—-0.5A0cp (46)

ag=a3=Tm
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Proposed Generalized Trajectory-Switching Modulation

Open-Loop Simulation Example under TSM

200{Vab Ved VCr _-overshoot
o LI L R AR TR
-200)
K
. I/' IW
< 4
e ---Original State ---Transient State ---New State
4 20m 20.04m 20.08m 20m 204
100|Vao VCra ~Vbo VCrb Veo' Vere Vo Verd 2
z 0 2,
-100
-2
iru 00%7 g ir-b 00%7,, i]'(‘ im(' im‘[mz' -4
2 20m 20.08m 20m 20.08m 20m 20.08m 20m 20.08m -200 -100 0 100 200
Time (s) ver (V)
(a) (b)

Figure 59: The open-loop simulation examples from SPS mode to TPS mode under TSM with V3 =110 V, V=100 V, f; =60
kHz, and F'=1.54. (a) Simulated transient waveforms under TSM. (b) vc,-i, state-plane diagrams under TSM.

B © Although TSM is able to suppress transient oscillations, it still leads to excessive transient dc offsets
in 4y, and some overshoots in vc,.
B © Note that TSM is only suitable for use with MPS gating schemes when F' is large.
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Proposed Generalized Trajectory-Switching Modulation

Open-Loop Simulation Example under GTSM

200{Vab Ved Ver
o LT PR T
-200)
4
I/' lm
<0 W
~ A --Original State ---Transient State -—-New State
“ 20m 20.04m 20.08m 20m 204
100|Vao VCra ~Vbo VCrb Veo' Vere Vo' VCrd 2
s ~
<0 <0
-100
-2
AN AVAYAVAVAY AV AVAVAVAVAVAY \VAVAVAVAVAVAVAIVAVAVAVAVAVAVA
iru 00*1',,,“ ir-b Oo*imb i]'(‘ im(' im‘[mz' -
2 20m 20.08m 20m 20.08m 20m 20.08m 20m 20.08m T a0 -100 0 100 200
Time (s) ver (V)
(a) (b)

Figure 60: The open-loop simulation examples from SPS mode to TPS mode under GTSM with V; =110 V, V5 =100 V,
fs =60 kHz, and F'=1.54. (a) Simulated transient waveforms under GTSM. (b) vc,-i, state-plane diagrams under GTSM.

B © GTSM can achieve a transient performance without overshoot, transient dc offset and oscillations.
B © GTSM produces lower energy trajectories of i, and v, and represents a significant improvement
over TSM, even when F is large.
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MPC With Minimum-RMS-Current Operation

Minimum-RMS-Current Operation for SR-DABC

Minimizing i, rms

To maintain a high efficiency during steady state, i, _rms should be minimized for reducing conduction loss.

T, 2\[‘/1 COS [61] +M2 COS2 [93]
= 2
i RMS = m \/ —2M gos [ } Ccos [G;fcos [92} (47)

P, = 1g /O Vap - Irdt = % sin [02] cos {9—21] cos {%3] (48)
The optimal steady-state phase-shift angles can be obtained by solving the constrained minimization problem:
1’1’1011’1én’lglze Zr -RMS (01, 025 03)? subject to P0(017 027 03) S Po,d & |Po,d| S Po,mam (49)

1,92,03

The optimal solution sets can be solved by using the method of Lagrange multipliers:
B Case 1l (M>1 and |Pon|<+/1—1/(M?)):
61 = 0,02 = arctan [P, - M], 05 = 2arccos [ 1/(M?) + Pg,n} (50)
B Case 2 (M <1 and |P,_,|<V/1 — M?):
01 = 2 arccos [\/M2 + Pc?,n] ,02 = arctan [P, , /M],05 =0 (51)
B Case 3 (other operating regions):
61 = 0,02 = arcsin [P,_,],03 = 0 (52)
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MPC With Minimum-RMS-Current Operation

MPC Design for MPS-Modulated SR-DABC

Control Scheme for MPS-Modulated SR-DABC

Vo il Brror The dynamics of V2 can be obtained as
Va re — > Vo cln+1] dva P, 8NV; . 0 0
" V— Compensator| T Co 7dt2 A 0= 7r2XT1 sin [B2]cos {51] cos [53} —I, (53)
207 2olrH] Discretizing (53) using the forward Euler method
5 | \%:)) Predictive Model of j dVa_s[n] T 4
I, sl — DABSRC , [ Minimizing Vapln +1]=Vosn]+—3—1T (54)
:;UV%Z%:)) Minimum-RMS-Current | &, Cost Function Mlnlmlzmg I = (‘/Q_Ref —Vac [TL+1])2, lfEog Vj =0, yiEIdS the
L—s  ptimization (30)-(52) predicted optimal outer phase-shift angle
- 2
049 0,[n+1] (55) O2[n + 1]=arcsin T2y ZS { 05[]
PWM Generator 8NV1_S[ ] cos 4 COS C, _fs
Transient Modulatior
Ol 11 SN YO cTPSMor [ Gate *
On+13 | % PAG, N +K, Vo g[n|+K; Vo glT 55
«)'{[T \]{—> A0, GTSM @45) | Driver pVauslnl T;) e (55)
When implementing the control loop, the outer phase-shift angle
Figure 61: Block diagram of MPC with minimum- 7 5 5 5
RMS-current optimization. 02 is calculated from (55), while the inner phase-shift angles 61
and 03 are directly determined using (50)-(52).
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Simulated Closed-Loop Results

MPC With Minimum-RMS-Current Operation

Time (s)[85m 90m 85m 90m RS EES
SPSDPS
~ 100
S
'S 0.0]
- =100
< = 4.0]
: < 0
[ = -4.0)
3 2,
£ < 0.0]
= -1
0 MPCHCTPSM
o DPS SPS
< o0 :
. sPS-DPs
—~ 100
= 300) < 00
$ 09 =100
= 2300
= 4.0
12) < 0
R = -4.0|
< 00 =
= < 00
12 )
—— -1.2
MPC+CTPSM MPCGTSM MPC+GTSM

Figure 62: Simulated closed-loop transient waveforms under 200-Hz 0.5-to-2 A pulsed-power loads. V3 =125 V, Vo =100 V,
fs =50 kHz, FF=1.2835, K; =0.08, and K; =0.00008.

B © It can be seen that the overshoots and undershoots in 4., vcr, and i, under MPC4+CTPSM are
significantly larger than those under MPC+GTSM.
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Online Estimation of Resonant Frequency

When f, Deviates from Its Nominal Value

@ Due to aging effects, environmental conditions (e.g., temperature and humidity), manufacturing tolerances,
etc., the actual values of C. and L, may deviate from their nominal values. From (45) and (55), the algorithms
of both GTSM and MPC are related to X, =wsL,—1/(wsCy) and F = f,/fr =27 fs7/L-C,, respectively.

Steady-State Trajectory

Transient Trajectories under CTPSM

Transient Trajectory under GTSM with £=50 kHz and F=1.2835

inder GTSM h £=50 kHz and F 3462 (+10% Error in C,)

ransient Trajectory

__the end of the second switching cycle
the end of the first switching cycle

i (A)

<

-240 Vere (V) 240

(a)

3.2

ire (A)

N
)

=210

Steady-State Trajectory

Transient Trajectories under CTPSM

Transient Trajectory under GTSM with £=50 kHz and F=1.2835

I'ra

nsie

nder GTSM with £=50 kHz and £ 3462 (+1(

1t Trajectory

Vere (V)

Error in C,)

Figure 63: Simulated transient vcgc-ir. state-plane diagrams in submodel 3 under open-loop conditions, where Afs = 7/3
(i.e., Abcp = 7/3), fs =50 kHz, and F =1.2835 (nominal value) or F'=1.3462 (+10% error in C,). (a) Transient vcre-ire
state-plane diagrams of the first two switching cycles. (b) Transient voyc-irc state-plane diagrams of 25 switching cycles.
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Online Estimation of Resonant Frequency

Automatic Resonant-Frequency Tracking Technique

A Simple Perturb and Observe (P&0) Method

With large deviations in X, and F', the performances of both PWM generator and controller can be affected.
According to (48), the estimation of X, under TPS modulation is given by
_ 8NV . 01 03
Xr=wsLr—1/(wsCr)= o, [#2]cos { 5 ]cos { 2 } (56)
As X, changes with fs (or ws) only, fs must be perturbed to produce different values of X, .
In theory, for a given switching frequency fs_;, its corresponding impedance X, ; is given by
Xri=+L;/Cr (F;, —1/F) = Z, (F;, — 1/F)) (57)
Define the nominal impedance X, _, at the nominal switching frequency fs_n as
Xon =Ly /Cr(Fn—1/Fy) = Z, (Fn — 1/F,) (58)
Combining (57) and (58), the estimated f, and F can be obtained from (59) and (60).
f _ Xr_iefs_ifsQ_n - Xr_nefg_ifs_n
e X'r‘_iefs_i - X'r‘_nefs_n

_ fs_n (Xr_iefs_i — XT-nefs_n)
fnee = \/f (Xr_iefoon — Xronefsii) (60)
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Experimental Results

Experimental Setup of SR-DABC

Table 6: Circuit Parameters of SR-DABC.

Symbol Parameter Description Value or Part Type
Vi Input Voltage 110-125 V
Va Output Voltage 100 V
. DANGER!
C, Output Capacitance A7 uF \ SEATE N High Voltage
Ry Load Resistance 50/200 Q \_ S B e

HRES

N:1 Transformer’s Turns Ratio 1:1
L

m Magnetizing Inductance 650 H

L, Resonant Inductance 321 pH

Ly Secondary Inductance 1.70 pH

C, Resonant Capacitance 52 nF

fs Switching Frequency 50-60 kHz g

fr Resonant Frequency 38.96 kHz T v

Sy~Q, Power Switches UnitedSiC UJC06505K . >
Dead Time 250 ns i Q. £ =@ . 2

_ Gate Driver TI UCC21520 Full Bridge 1 | |Resonant Inductor || Auxiliary Inductor ‘

- Current Transducer LEM LA 55-P i v g8 S "

- Voltage Transducer Resistive Divider

- Microprocessor TI TMS320F28335 Figure 64: Photograph of laboratory prototype of SR-DABC.

- DAC Module Microchip MCP4921
Simulation Platform Powersim PSIM
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Experimental Results

Open-Loop Tests Under CTPSM v.s. GTSM

Case I: CTPSM
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Figure 65: Experimental open-loop transient waveforms with V3 =110 V, V5, =100 V, fs =50 kHz, and F =1.2835. (a) and
(d) Case I: Increasing power. (b) and (e) Case II: Decreasing power. (c¢) and (f) Case III: Reversing power flow direction.
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Experimental Results

Closed-Loop Tests #1 (a) MPC+CTPSM (b) MPC+GTSM
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Figure 66: Experimental Closed—<lo)op results for a step-up load change from 0.5-2 A with {I((;):OAOSSA, K;=0.0015} under (a)
MPC+CTPSM and (b) MPC+GTSM. Vi =125 V, Vo =100 V, f, =50 kHz, F=1.2835, and X, =39.6317.
B © The waveforms under MPC+GTSM can approach their new steady-state values rapidly without
undergoing any transient oscillations and dc offsets.
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Experimental Results

Closed-Loop Tests #2 (a) MPC+CTPSM (b) MPC+GTSM
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Figure 67: Experimental closed-loop results for a step-down load change from 2-0.5 A with {K; =0.055, K; =0.0015} under
(a) MPC+CTPSM and (b) MPC+GTSM. V; =125V, V5o=100 V, fs=50 kHz, F=1.2835, and X, =39.6317.

B © The output voltage quality is much improved under MPC+GTSM and does not suffer from any
transient oscillations.
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Experimental Results

Closed-Loop Tests #3 (a) MPC+CTPSM (b) MPC+GTSM
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Figure 68: Experimental closed-loop results for a step-up load change from 0.5 to 2 A with {K; =0.15, K; =0.004} under (a)
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MPC+CTPSM and (b) MPC+GTSM. V; =125 V, V5, =100 V, f; =50 kHz, FF'=1.2835, and X, =39.6317.

B © MPC+GTSM leads to shorter recovery time in V4 and shorter settling times in 4, and ..
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Experimental Results

Closed-Loop Tests #4 (a) MPC+CTPSM (b) MPC+GTSM
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Figure 69: Experimental closed-loop results for a step-down load change from 2 to 0.5 A with {K; =0.15, K; =0.004} under
(a) MPC+CTPSM and (b) MPC+GTSM. V4 =125V, V5o=100 V, fs=50 kHz, FF=1.2835, and X, =39.6317.
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Experimental Results

Parameter Sensitivity Tests #1 Open-Loop Conditions
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Figure 70: Experimental open-loop transient waveforms under CTPSM and GTSM while considering different capacitance
errors. V1 =110 V, Vo =100 V, fs =50 kHz, 0; =A0, =0, 03 =A03=0, 02 =7/9, and Afs =47 /9.
B © Even there exists 50% capacitance deviation, GTSM performs better than CTPSM
(smaller transient oscillations in i, and always no transient dc offset in i,,).
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Experimental Results

Parameter Sensitivity Tests #2 Closed-Loop Conditions
MPC+CTPSM
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(a
B The automatic resonant-frequency tracking techngque starts from T and will last until Ts.
B © MPC+GTSM always shows a significantly better transient performance over MPC+CTPSM, as

transient oscillations can be observed under MPC+CTPSM.
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Experimental Results

Parameter Sensitivity Tests #2 Closed-Loop Conditions
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Figure 71: Experimental closed-loop online estimation of X, and F. Transient waveforms for step load changes between 0.5
and 2 A are shown under (a) MPC+CTPSM and (b) MPC+GTSM. V; =110V, V., =100 V, K; =0.08, K; =0.002, fs_, =50

kHz, fs_; =52 kHz, initial (incorrect) values of X, =49.8339 and F' =1.4060.
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Main Research Contributions

Main Research Contributions

B A set of unified equations are developed for governing all SPS-based OTPSM strategies of NR-DABC.

B A new condition enabling a full elimination of all transient dc offsets is introduced, which gave birth to
the simplest and most effective OTPSM strategy (i.e., SS-OTPSM) for NR-DABC.

B SS-OTPSM+EMPC represents the first attempt in the related literature to discourse the co-optimization
of transient modulation and controller designs to achieve dc-offset-free and ultrafast dynamics.

B A simple TSM is proposed to achieve oscillation-free dynamics in SPS-modulated SR-DABC.

B A powerful and generalized transient modulation approach, i.e., GTSM, is proposed for achieving
oscillation-free and dc-offset-free dynamics in MPS-modulated SR-DABC/NR-DABC.

B We are the first to demonstrate the effectiveness of such optimized transient modulation strategies in a
truly fast closed-loop controlled DABC.

Table 7: Comparisons of the proposed three transient modulation strategies.

Features & Capabilities SS-OTPSM TSM GTSM
DC-offset Elimination v X v
Oscillation Suppression X v v
Compatibility with MPS Modulation v X v

Topological Compatibility NR-DABC | SR-DABC | DABC
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Key Research Findings

Key Research Findings and Design Philosophy

Research Findings

@ Implementing OTPSM technology cycle by cycle in a closed-loop DAB system can significantly reduce
transient dc offsets and high-frequency oscillations of the high-frequency-link currents, thereby indirectly
increasing the control bandwidth and reducing the burden of controller design.

E—REes, —FEmBE
© OTPSM strategies are more suitable for use in combination with high-gain and fast controllers.

B LR

@ The deep integration and co-optimization of the Controller and Actuator (PWM Generator) can achieve
truly optimal dynamic performance.
AREIERL, KBRS, HSES

Design Philosophy of OTPSM

@ Versatility: OTPSM should preferably be compatible with different steady-state modulation strategies.

© Simplicity: OTPSM should preferably be easily implemented on a cycle-by-cycle manner.

@ Robustness: OTPSM should preferably be insensitive to changes in circuit parameters.
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